

Financial Leverage

Die unendliche Rendite des Eigenkapitals und ihr Risiko

Gliederung

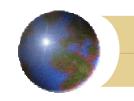
- I. Was besagt der Leverage-Effekt?
- II. Die Leverage Chance
- III. Die Leverage Gefahren
- IV. Fazit
- V. Literatur

Was besagt der Leverage-Effekt?

- Der Leverage-Effekt, auch als Hebelwirkung bekannt, gibt im Allgemeinen die prozentuelle Änderung einer abhängigen Größe im Verhältnis zu prozentuellen Änderung einer beeinflussenden Größe an.
- Leverage-Effekt markiert den funktionalen Zusammenhang zwischen Eigenkapitalrendite und Verschuldungsgrad

Eigenkapitalrentabilität = <u>Gewinn (Jahresüberschuss)</u> Eigenkapital * 100%

Verschuldungsgrad = <u>Fremdkapital</u> Eigenkapital


Die Leverage-Chance

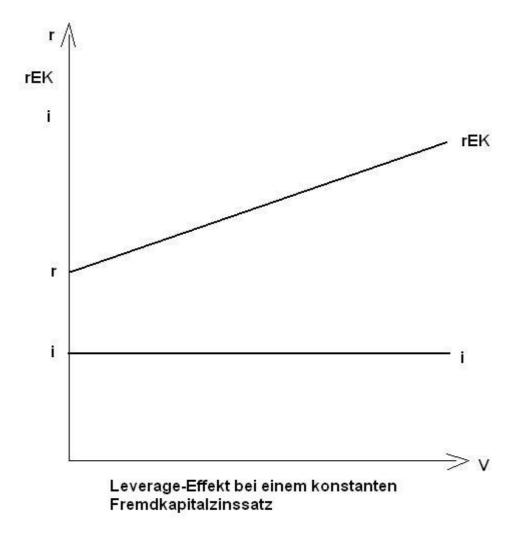
- Unterscheidung des investierten Kapitals in Eigenkapital und Fremdkapital
- Fremdkapitalgeber werden in vertraglich festgelegter Höhe aus den Periodenüberschüssen bedient -> Fremdkapitalzinsen
- Eigenkapital verzinst sich entsprechend durch die verbleibende Residualgröße -> Periodenüberschüsse – Fremdkapitalzinsen
- Daraus ergibt sich, dass die Eigenkapitalrendite mit steigender Verschuldung zunimmt
- Voraussetzung dafür, dass die Gesamtkapitalrendite r größer ist als der Fremdkapitalzinssatz i
- -> Leverage-Chance

- Gesamtkapitalbedarf GK betrage 1000 GE
- Investitionen erwirtschaften einen Periodenüberschuss x von 100 GE
- Gesamtkapitalrendite rGK von 10%
- Zinssatz i für aufzunehmendes Fremdkapital beträgt 6%
- Ziel: Untersuchung der Auswirkungen der Substitution des EK durch FK auf die Eigenkapitalrentabilität ausgehend von einer vollständigen Finanzierung mit Eigenkapital

$$rGK = \frac{x}{EK + FK}$$
 $rEK = \frac{x - i * FK}{EK}$ $V = \frac{FK}{EK}$

EK	FK	V	X	rGK	i	i*FK	x- i*FK	rEK
1000	0	0	100	10%	6%	0	100	10%
800	200	0,25	100	10%	6%	12	88	11%
667	333	0,5	100	10%	6%	20	80	12%
500	500	1	100	10%	6%	30	70	14%
333	667	2	100	10%	6%	40	60	18%
250	750	3	100	10%	6%	45	55	22%
200	800	4	100	10%	6%	48	52	26%
168	833	5	100	10%	6%	50	50	30%
143	857	6	100	10%	6%	51,4	48,6	34%
125	875	7	100	10%	6%	52,5	47,5	38%
111	889	8	100	10%	6%	53,3	46,7	42%
100	900	9	100	10%	6%	54	46	46%
91	909	10	100	10%	6%	54,5	45,5	50%
0	1000	u.e.	100	10%	6%	60	40	u.e.

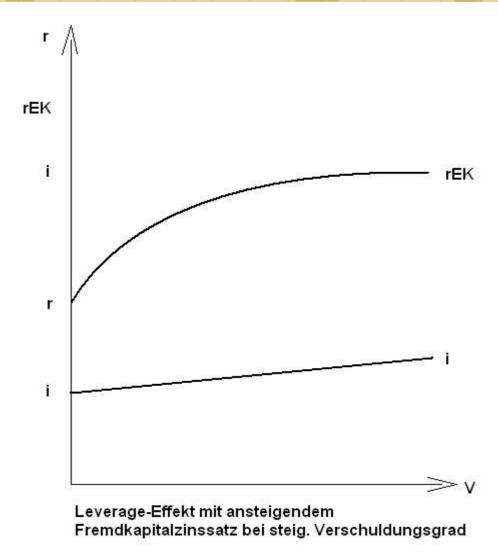
Finanzwirtschaft VII


Matthias Paesel

Hochschule Magdeburg-Stendal

- Beispiel mit einem vom Verschuldungsgrad unabhängigem Fremdkapitalzinssatz
- Lineare Abhängigkeit der Eigenkapitalrentabilität rEK vom Verschuldungsgrad V
- Beliebige Steigerung der Eigenkapitalrentabilität, vorausgesetzt, der Fremdkapitalzinssatz i liegt unter der Gesamtkapitalrentabilität r, sprich r > i!

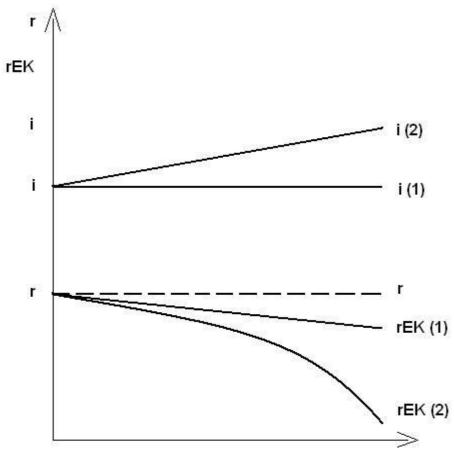
- Aussicht auf hohe Eigenkapitalrentabilität -> Versuch der vollständigen Substitution durch Fremdkapital
- Beispiel setzt verfügbares Fremdkapital voraus und geht von 1000 GE zu disponierenden Eigenkapital aus
- Keine Alternative Verwendung des freigesetzten Eigenkapitals
- Bei 100% Substitution des Eigenkapitals durch Fremdkapital und 5% durch Wiederanlagemöglichkeit erhalten wir einen Gesamterlös von nur 90 GE, im Vergleich zu 100 GE bei vollständiger Finanzierung durch Eigenkapital
 - -> 1000 GE * 5% + 40 GE = <u>90 GE < 100 GE</u>
- Substitution des EK durch FK nur bei sinnvoller und ausreichender Rendite der Alternativanlage



Die Leverage-Gefahren

- Vorteilhaftigkeit der Substitution des Eigenkapitals setzt also, bei Unbeachtung von Alternativanlagemöglichkeiten, eine höhere Verzinsung des Gesamtkapitals einer Investition als die, des Fremdkapitalzinssatzes voraus
- Die Bedingung birgt 2 Gefahren -> Leverage-Gefahren
- 1. Bei Fremdkapitalzinssatz i, der wegen zunehmenden Ausfallrisikos mit wachsendem Verschuldungsgrad V steigt, ergibt sich eine unterproportionale Abhängigkeit der Eigenkapitalrentabilität rEK vom Verschuldungsgrad

Steigerung der rEK nur solange rEK > i

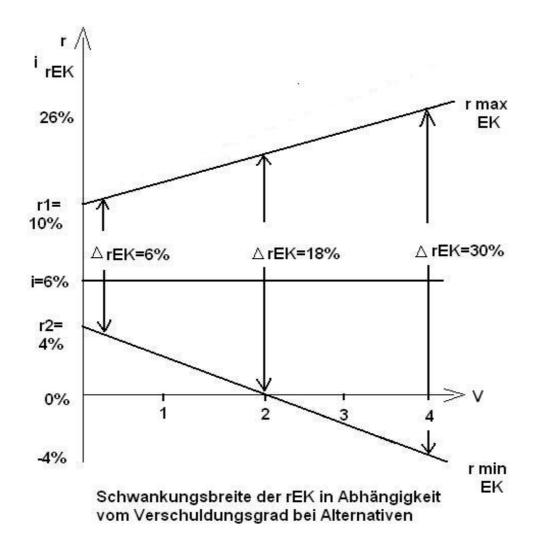


2. Bei negativem Fall, dass die Investitionsrendite kleiner ausfällt als der Fremdkapitalzinssatz, sinkt mit wachsendem Verschuldungsgrad die Eigenkapitalrentabilität, linear für den Fall des Verschuldungsgrad-unabhängigen Fremdkapitalzinssatzes i (1) und überproportional für den Fall, dass der Fremdkapitalzinssatz i (2) mit zunehmender Verschuldung ansteigt

Hierbei ist von einer Substitution des Eigenkapitals durch Fremdkapital abzuraten!!!

Leverage-Effekt bei einer Investitionsrendite unterhalb des Fremdkapitalzinssatzes

- Kann die Investitionsrendite nicht als konstant, also als im voraus sicher angegeben werden, sind alternative Zukunftslagen für die optimale Kapitalstruktur zu berücksichtigen
- Gesamtkapitalbedarf betrage weiterhin 1000 GE
- Periodengewinne von alternativ $x_1 = 100$, $x_2 = 80$, $x_3 = 60$, $x_4 = 40$ GE sind zu erwarten
- Fremdkapitalzinssatz beträgt weiterhin unabhängig vom Verschuldungsgrad 6%
- Ziel: Auswirkungen auf die Eigenkapitalrentabilität durch Substitution des EK durch FK in den verschiedenen Zukunftslagen



FK	EK	V	i*FK (i = 6%)	rEK bei alternativem Bruttogewinn				
			ŕ	$x_1 = 100$ ($r_1 = 10\%$)	$x_2 = 80$ ($r_2 = 8\%$)	$x_3 = 60$ $(r_3 = 6\%)$	$x_4 = 40$ $(r_4 = 4\%)$	
0	1000	0	0	10%	8%	6%	4%	
200	800	0,25	12	11%	8,5%	6%	3,5%	
333	667	0,5	20	12%	9%	6%	3%	
500	500	1	30	14%	10%	6%	2%	
667	333	2	40	18%	12%	6%	0%	
750	250	3	45	22%	14%	6%	-2%	
800	200	4	48	26%	16%	6%	-4%	
900	100	9	54	46%	26%	6%	-14%	
1000	0	u.e.	60	u.e.	u.e.	6%	u.e.	

- Positives Ergebnis (Leverage-Effekt) nur bei denjenigen Zukunftslagen, bei denen die Investitionsrendite über dem Zinssatz für Fremdkapital liegen
- Schwankungen der Eigenkapitalrendite hängen nicht nur von der Investitionsrendite sondern auch vom Verschuldungsgrad ab

Es lässt sich ein Zusammenhang der Gestalt erkennen, dass

$$\Delta rEK = (1+V) \times \Delta r$$

An dieser Stelle soll die (unsichere) Investitionsrendite als um ihren Erwartungswert r* verteilte Zufallsgröße \tilde{r} mit...

$$r^* = \int_{\widetilde{r}_{\min}}^{\widetilde{r}_{\max}} \widetilde{r} \times f(\widetilde{r}) \times d\widetilde{r}$$

(wobei $f(\widetilde{r})$ erwartete Häufigkeit von \widetilde{r})

...betrachtet werden.

Erfasst man diese Schwankungen in der (zu erwartenden) Standardabweichung σ^*_{rEK} bzw. σ^*_r , so lässt sich die Abhängigkeit formal wie folgt ableiten:

$$\sigma^*_r = \sqrt{\int (r^* - \widetilde{r})^2 \times f(\widetilde{r})} \times d\widetilde{r}$$

entsprechend

$$\sigma^*_{rEK} = \sqrt{\int (r^*_{EK} - \widetilde{r}_{EK})^2} \times f(\widetilde{r}_{EK}) \times d\widetilde{r}_{EK}$$

$$\sigma^*_{rEK} = \sqrt{\int \{r^* + V(r^* - i)\} - [\widetilde{r} + V(\widetilde{r} - i)]\}^2} \times f(\widetilde{r}) \times d\widetilde{r}$$

$$\sigma^*_{rEK} = \sqrt{\int \{r^* + V \times r^* - \widetilde{r} - V * \widetilde{r}\}^2} \times f(\widetilde{r}) \times d\widetilde{r}$$

$$\sigma^*_{rEK} = \sqrt{\int \{(1 + V)(r^* - \widetilde{r})\}^2} \times f(\widetilde{r}) \times d\widetilde{r}$$

$$\sigma^*_{rEK} = \sqrt{\int (1 + V)^2 (r^* - \widetilde{r})^2} \times f(\widetilde{r}) \times d\widetilde{r}$$

$$\sigma^*_{rEK} = (1 + V) \times \sqrt{\int (r^* - \widetilde{r})^2} \times f(\widetilde{r}) \times d\widetilde{r}$$

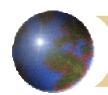
$$\sigma^*_{rEK} = (1 + V) \times \sigma^*_{r}$$

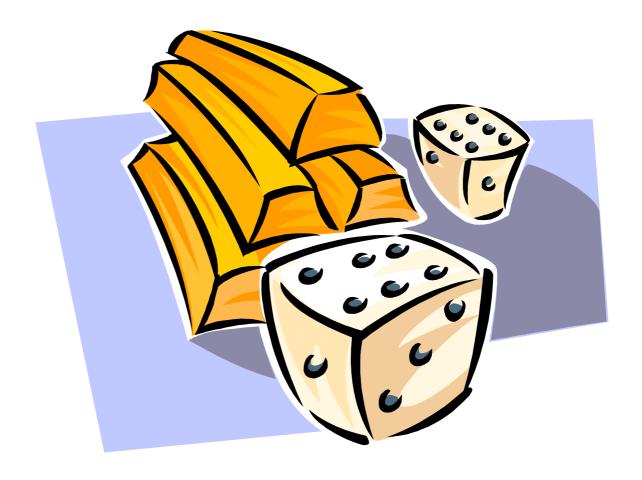
$$\sigma^*_{rEK} = \sigma^*_{r} + V \times \sigma^*_{r}$$

 $\sigma_{rEV} = \sigma_r + V \times \sigma_r$

- Standardabweichung der Eigenkapitalrendite hängt also von der Standardabweichung der (leistungswirtschaftlichen) Investitionsrendite und vom Verschuldungsgrad ab
- Akzeptiert man Standardabweichung als Risikomaß, so wird deutlich, dass sich das Risiko der Eigenkapitalgeber additiv aus dem leistungswirtschaftlichen Risiko und dem Kapitalstrukturrisiko zusammensetzt.

$$\sigma_{rEK} = \sigma_r + V \times \sigma_r$$




Fazit

- Erkennbar, dass sich durch die Variation des Verschuldungsgrades nicht nur die Rentabilität des Eigenkapitals, sondern auch die Risikoposition des Eigenkapitalgebers deutlich verändern kann
- Änderung der Verschuldungssituation kann Reaktionen der Fremdkapitalgeber hervorrufen
- Entscheidung über effiziente Kapitalstruktur lässt sich nur mit Hilfe weiterer Annahmen und Optimalitätskriterien treffen

- Kapitaltheoretische Verschuldungsanalyse versucht eine Bewertung der Verschuldung anhand der Optimalitätskriterien Marktwert der Unternehmung bzw. Marktwert der Eigenkapitalanteils und Kapitalkosten
- Sie sucht den Verschuldungsgrad, der als optimal zu bezeichnen ist, da er den Marktwert der Unternehmung bzw. der Eigenkapitalanteile maximiert oder die Kapitalkosten minimiert

Literatur

- Louis Perridon/Manfred Steiner (2002): Finanzwirtschaft der Unternehmung.
- Edwin O. Fischer (2002): Finanzwirtschaft für Fortgeschrittene.